Next Level Transparency im Einkauf

In konjunkturell - und geopolitisch anspruchsvollen Zeiten sind Transparenz auf Artikelebene und verlässliche Unternehmensdaten das Gebot der Stunde. Wir mussten aber schnell feststellen: Einkäufer haben eine andere Vorstellung von "Transparenz" und "verlässlichen Daten" als wir. Aber der Reihe nach ... 

 

Unser Verständnis von Transparenz

Einkäufer haben mit tausenden von Komponenten zu tun und praktisch täglich strategisch wichtige Entscheide zu fällen. Aufgrund der Menge an Artikel ist es entscheidend, dass einkaufsspezifische - aber auch technische Parameter für jeden Artikel auf Knopfdruck verfügbar sind. Nur so kann die hohe Menge an Artikeln effizient analysiert werden. Was unterscheidet aber unsere Sichtweise von Transparenz gegenüber einer "traditionellen" Sichtweise von Transparenz eines Einkäufers?

  • Auf Artikelebene wird analysiert – und nicht nur Lieferantenumsätze der Warengruppe
  • Mehr als 85% der Artikel werden analysiert und nicht nur A-Teile und Highrunner
  • Preistreibende Merkmale sind automatisiert verfügbar (Daten)
  • Volatile Preiskomponenten sind tagesaktuell (Währung, Materialpreis, etc.)
  • Erkenntnisse zu Einsparpotenzialen sind auf Knopfdruck verfügbar

Daten für Next Level Transparency

Transparenz braucht Daten. Am liebsten alle preistreibenden, relevanten Daten auf Knopfdruck. Bei mechanischen Bauteilen und Baugruppen sind das z.B. folgende Informationen, welche pro Artikel erhoben werden müssen:

  • Exakte Werkstoffbezeichnung
  • Gewicht
  • Dimensionen
  • Anzahl Form – und Lagetoleranzen
  • Anzahl Masstoleranzen
  • Beschichtungen
  • Anzahl Bohrungen
  • etc.

Die Liste ist lang ... und die Wunschliste der Einkäufer noch länger. Wünschen ist erlaubt. Wir konnten mit unseren Data-Mining Services bisher alle Unternehmen mit perfekten Daten beliefern.

Wir schaffen uns den Datenhimmel

Von den allermeisten Artikeln stehen 3D CAD Modelle und 2D Zeichnungen zur Verfügung. Das sind perfekte Datenquellen um preisrelevante Parameter auszulesen. Mittels Data-Mining und der Data-Driven Engine startet der Prozess des "Digitalen Bergbaus". In tausenden 3D CAD Daten und 2D Dokumenten werden alle relevanten Parameter automatisiert ausgelesen. Die volatilen Einflussfaktoren wie Währungen und Rohstoffpreise werden natürlich auf tagesaktuelle Werte justiert. So ist sichergestellt, dass nicht mit historisch schon lange obsoleten Rohmaterialpreisen oder Währungskursen gerechnet wird. Auch dieser Schritt wird vollautomatisch vorgenommen. Das Resultat: Wir wissen nun über jeden Artikel alles - restlos alles. Wohlgemerkt über tausende Artikel.

Fragestellungen beantworten und Einsparungen in Massendaten identifizieren

  • Welche Artikel sind ähnlich, aber auf einem unterschiedlichen Preisniveau?
  • Sind die Teile einer Warengruppe bei den richtigen Lieferanten platziert hinsichtlich deren Fertigungskompetenzen?
  • Wie kompetitiv ist unsere interne Fertigung gegenüber externen Lieferanten?
  • Welche nahezu identischen Bauteile lassen sich zu einem Bauteil standardisieren, welches sich dann in höherer Stückzahl günstiger beschaffen lässt?

Damit eine Bewertung vorgenommen werden kann, werden die technischen Parameter zusätzlich mit den Bewegungsdaten aus dem ERP angereichert. Nun können strategisch wichtige Fragen innert weniger Minuten beantwortet werden.

Make_Buy_Decision
Das Bild zeigt Artikel einer spezifischen Warengruppe, die hinsichtlich Make or Buy analysiert werden

 

Machen statt Meckern!

Die Digitalisierung bietet fantastische Möglichkeiten um in Massendaten Parameter zu extrahieren und diese Parameter mit Machine Learning auszuwerten. Die enorme Geschwindigkeit ist eindrücklich und ausschlaggebend, dass innere Hürden wie - "ich kann doch nicht tausende .pdf Dateien durchschauen" - fallen. Machen ist angesagt! Ist Next Level Transparency auf Ihrem Wunschzettel? Kontaktieren Sie uns oder unser Partnerunternehmen Durch Denken Vorne Consult GmbH. Wir lassen Ihre Wünsche Wirklichkeit werden.

SID_similar_item_detectionDas Bild zeigt Artikel welche fertigungstechnisch zu 98% identisch sind ... jedoch unterschiedlich beschafft werden

 

Mit der Nutzung der eigenen Daten starten Quellhinweis: "Bild von stockkingjunge-schoene-frau-im-blauen-t-shirt-die-die-kamera-durch-die-lupe-mit-interesse-ueber-rosa-betrachtet" | Bild von stockking auf Freepic

Zurück

Verwandte Artikel

Der Versorgungsknappheit mit Digitalisierung begegnen

Die Versorgungsknappheit stellt viele Unternehmen vor große Herausforderungen. Aktuell sind die...

Wie KI Unternehmen wettbewerbsfähiger macht

Heute fand der Breakfast Event bei Staufen.Inova statt. Zusammen haben wir aufgezeigt, was Next...

Lieferantenmanagement mit Algorithmen

Algorithmen unterstützen uns immer häufiger im Alltag. Algorithmen im Lieferantenmanagement sind...